

CE 2000

CE SERIES

AC Power Draw and Thermal Dissipation

The information provided on this page is calculated data based on driving both channels to rated output using the 1 kHz Maximum Average Power rating method.

Other parameters used in calculation include a conservative idle current estimate of 90 watts and a conservative estimate of effeciency at 65%

Information is provided only for getting an idea of current draw and heat produced. Actual performance will vary depending on environment, program material, load, signal, and AC mains voltage and frequency.

Values of calculated current draw are intended to represent average draw corresponding to the thermal breaker requriements that should be met to handle the amplifier as a load on the AC mains.

Peak current draw with dynamic program material may be significantly higher. Thermal information is provided to assist with calculating air conditioning needs. The data here should not be construed as specifica-

Duty cycle of various program material:

Individual speech: 10% Acoustic/chamber music: 20% Full-range rock music: 30% Compressed rock music: 40%

Pink noise: 50%

Here are the equations used to calculate the data presented in Figure 1:

The quiescent power draw is a maximum value and includes power drawn by the fan. The following equation converts power draw in watts to current draw in amperes:

Current Draw (amperes) =
$$\frac{\text{AC Mains Power}}{\text{AC Mains}} \times \frac{\text{Power}}{\text{Factor (.83)}}$$

The value used for Power Factor is 0.83. The Power Factor variable is needed to compensate for the differnece in phase between the AC mains voltage and current. The following equation is used to calculate thermal dissipation:

$$\begin{array}{l} \text{Thermal Dissipation} = \left(\begin{array}{l} \text{Total output power with all x } \text{Duty x .35} \\ \text{channels driven (watts)} \end{array} \right. \\ \left. \begin{array}{l} \text{Amplifier Efficiency (.65)} \end{array} \right. \\ + \left. \begin{array}{l} \text{Quiescent Power} \\ \text{Draw (watts)} \end{array} \right. \\ \text{X 3.415} \\ \end{array}$$

The value used for inefficiency is 1.00-efficiency. The factor 3.415 converts watts to btu/ hr. Thermal dissipation in btu is divided by the constant 3.968 to get kcal. If you plan to measure output power under real-world conditions, the following equation may also be helpful:

CE 2000

	LOAD														
	2 Ohm Stereo / 4 Ohm Bridge					4 Ohm Stereo / 8 Ohm Bridge					8 Ohm stereo / 16 Ohm Bridge				
Duty Cycle	AC Mains Power Draw	Current Draw (Amps)		Thermal Dissipation		AC Mains Power Draw	Current Draw (Amps)		Thermal Dissipation		AC Mains Power Draw	Current Draw (Amps)		Thermal Dissipation	
-	(watts)	120V	240V	btu/hr	kcal/hr	(watts)	120V	240V	btu/hr	kcal/hr	(watts)	120V	240V	btu/hr	kcal/hr
50%	1590	16.0	8.0	2100	529	1105	11.1	5.5	1521	383	705	7.1	3.5	1043	263
40%	1290	13.0	6.5	1742	439	902	9.1	4.5	1278	322	582	5.8	2.9	896	226
30%	990	9.9	5.0	1383	349	699	7.0	3.5	1036	261	459	4.6	2.3	749	189
20%	690	6.9	3.5	1025	258	496	5.0	2.5	793	200	336	3.4	1.7	602	152
10%	390	3.9	2.0	666	168	293	2.9	1.5	550	139	213	2.1	1.1	454	114

A Harman International Company

Crown International, Inc. 1718 W. Mishawaka Rd. Elkhart, IN 46517-9439 TEL: 574-294-8200

FAX: 574-294-8FAX

www.crownaudio.com

For more details refer to the applicable Operation Manual or contact Crown Factory Service. The provided data should not be construed as specifciations.

Crown and Crown Audio® are registered trademarks of Cown international, Inc. Printed in U.S.A ©2005 Crown Audio, Inc.

04/05 138367-1